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University of GOteborg, Chalmers University of Technology,

and Indiana University.

A new approach to the asymptotic, normality of simple
linear rank statistics for the regression case studied
earlier by Hajek (1968) is provided along with the
estimation of the remainder term in the approximation to

normality.

1. Introduction and Summary. Let Xl""’xn be independent

random variables having continuous cdfs (cumulative distri-

bution functions) Fl(x),...,Fn(x) respectively. Consider

a statistic sn = s(Xl,...,xn) with Esn = 0 and
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Esittw « 'Then, o prove the asymptotic normality of Sn
(as n-+«) , Ha%ek (1968) uses the method of projection
which gives to the statistic Sn , the approximation of

the form

(1.1) B, =

R

E( snlxjj .

j=1

Consider now the simple linear rank statistic Sh

introduced by Ha5ek (1962, 1968)

n
= - - \ A T3
(1.2) S, jxl cj{W(Rj/n) E[w(Rj/n),,

where the c¢'s are known constants, Rj is the rank of

Xj among (Xl,...,Xn) and ((¢) 1is a score generating
function defined on (0,1) . Hajek (1962) [see also Haiek-
;iddk (1967) ] established the asymptotic normality of S,
in (1.2) under the assumption that the F, are contiguous,
e.g. when Fi(x) = F(x-24 dni) where A 1is the unknown
parameter and the d's are the known constants. Later on
Haek (1968) studied the asymptotic normality of s, for
the general Fi(x) ( the non-contiguous case). Under the
set-up of Hdﬁek(l962%Juré&kovd’ and Puri (1975) , referred
to hereafter as JP, studied the problem of determining

the rate of convergence of the cdf of Sn to the limiting
normal ‘cdf and
O(N-;ﬂé) for §>0 . In this

established it of order

paper we not only give a ncw annroach to the asymptotic




-

normality of Sn for the general F. (i.e. not necessarily
contiguous) but improve the results of JP in providing a
sharper bound (for the general Fi's) . In the passing, we
may also mention that where as JP requires { to have a
bounded fourth derivative, here we only require the boundedness
of the second derivative. Furthermore whereas this paper
gives more explicit error bounds than the JP paper, the
later gives more information on the limiting behavior of
Esn and Var Sn .

We now introduce some notations. We define {(+) = 0

outside (0,1) . Then, we can use the supremum norm

(1.3) lell = sup [e(e) |
t€(-e», @

Set

(1.4) o; = R,/n, p;; = E[p,|X, ], u(x)

and u(x) = 0 , otherwise.
Then

n
. . = . -X. .
(1.5) R, jElu(xl 3)

In this paper, we shall deal with the following

approximation of Sn .




v"?:"f:n»g\. Pres

n
= ] -l 1 vl &
(1.6) Tn =& ¢3{¥(os,) -EQulp, )1+ (p; =004 (30},

assuming that ¢’ exists on (0,1) and

N n
(1.7) Th =55 E[Tnlxjj ]

Since E[ (p; -oii)w'(pii)j = 0, it follows that

A n n
=Yy - " i W/ 3
(1.8) T, iLlci{w(oii) E[W(°ii)"g§iEE(°i pyi) (oii)?xj,3

Let Hn - Gn and Gn be the cdfs of Sn Z Tn and

T respectively, and put

2 0\2 A2 2
(1.9) on E“Snj - 6n E[Tn' e -

Then our theorems are the following:

v has a derivative on (0,1) then

Theorem 1.1 : If

(l'lo)ucn(éh)‘“‘)”‘4CE2NU3+§TW'!f33i-§1¥ci?36;3 ;

2
) = t2m ¥ ¢ et /2

-0

where C is the constant in Berry-Esseen's inequality

(Zolotarev (1967) gives the approximation 0,9051) Further

L
(1.11) |8, =c, | = rl({‘,w'{:+[{¢”1§)vn'1




with an absolute constant C, » provided " exists on

(0,1).

Theorem 1.2 . If § has a second order derivative on (0,1)

then for any positive integers n and r such that n =2 2r

s 3 N 3a-3
(1.12)  [IH_ (8 ) - 8(+) [ sac(2]lv] +]y’]] )izllci! 5
2r
c=1 " 2r+l
+c,le Tl I+le her ] .
where C_ is an absolute constant.

2

Remark, If the c, are choosen such that |c,| ca//n

with constant a for all i and n , then

1 < a/yn ,

nr
2r
i 2r+1 % i
and for r = [log n] , [rI‘nr] €a Je (log n) n”?(1+0( e D)
Note that g-l c. is invariant and thus also 3 1 T
n 3 A Tnr

is invariant under the transformation c.l-’Y c. e (TS I

2, Same Lemmas.

Lemma 2.1 : For any positive integers r and n ,

2r< n , we have

(2.1) E[(pi-pii)zr'} <b(r)n" " .



with

r
(2.2) b(r) sn" T ¢ (AL (201  2r-2t -3t

g=1 t O (2r-26)1

and for n "r" g %

(2.3) b(r) 52-31'-(5—1!‘11[1+8n-1r33

Proof: By (l1.4) we obtain

1
n

b s lie]

O ~ Qs

ii .[u(xi—xj)f'j(x.l)j .

J#i

By the polynomial theorem we then get

n S.
iy 2r, . ~2r (2r)! % - A j
(2.0) BLlpy~py) 70 v a g 81, s 1030 (X -X,) -F i (x,) ]

sl+...+sn= 2

We claim that any term in this sum is equal to zero if f

sj =1 for some j0 . Indeed we find that the conditional
0]
expection of the product with respect to all Xj . jo

is equal to 0 if sj = 1 . Hence we have only to regard
0

terms with 8 = 0 or 22 for any j , and there can be

at most t <£r exponents sj different from 0 . If s, 22,

3 ® 2Qssest » sj =0 for j>t,i>t we obtain, observing

that




|u(Xi -xj) -Fj(Xi) t21

-2

t 8.
& i ]
(2.5) Eggl[u(xi xj) Fj(Xi)] sEj

t93ct

lf_'u(Xi—Xj)—Fj (xi)

t
: -t
= B[N [F.(X.)-F2 T<4a
J—
This inequality remains true for all permutations of the

indices 1,...,n. Put

(2.6)  y(t) = £ S—‘fﬁ'—s—T R
s’+...+st = 2r et

8.22, 9=, ...F
4 J

Since t indices out of n-1 indices can be choosen in

(n;l) different ways we obtain from (2.4) through (2.6),

(2.7) Bl ~0 P16 T ("Thweee™ |

MR

t=1

We claim that

(2.8) v(t) < (2_2_%2:_)!_! g-t, 2r-2t

Indeed, differentiating the identity

SR




; t S,
(5 v.)2F = 5 ___'(2_1:)_!__.33,_3

j=1 sl+...+st=2r

twice with respect to all yj and then putting all Y. equal

to 1 , we obtain

£
(2£3§'t)11t(2r-2t) 3 . R e
8yt...*+s, = 2r j=l 33 . S L

\
B2 A E
i 7

Now using (2.7) and (2.8), we get (2.1) and (2.2). We now
estimate b(r) further, mainly for use when n and r are

large. Put r-t = u . Then we can write

r-1
(2.9) b(r) £2°3F 5 k(u)
u=0
with
it n'“gg:)x (r_u)2u23u
(r-u)! (2u)! "
Particularly

k(0) = -(-;‘:—’;l-'— k(1) <4an~1g3, 2008

4 o

and for u=z=21

2
- ey ¥ | 43 | (r-u) (r-u-1)
"k“:)l .t A=) 2 (2u+1) (2u+2)

3 .1
<3n b o

3 €% for n ir s> .

“




Hence

3
for n e 54

Lemma 2.2 : For any positive integers r and

2r €n , we have

. 2% 2
. l
(2.10) E(T, Tn) T e vl e

if ¢’ exists on (0,1) , and if

exists on

’

(2.11) E{ (s, -T,) 2Ty ¢p(2r )u.”',Ierrzlrr ,
(2.12) E[(Sn-'gn) ks Sd(r,xlr)’_“if
with

b(2r) sn -2r § >: o )-(_EL%;_:. LAr-2t | -3t

2 4 ;- -t
c(r) £2°Tn i 21( s, Tziég%%] i
t=

1
a9 £L0b(20) ] e[+ Len) 17 4/ 127

i 1K d

Further we have the estimates




-

-10-
(2.13) b(2r) 277 LI 114 26471,3)
for 2°n71p3¢3 ;
a
(2.1") c(r) s-%—;—{g—!-[1+2 n lr3’ for n-lr3s—§3—

Remark : By Stirling's approximation of the T=fu nction we

have

(4r)! _ . 6r+5 . 1
(20) 1 <2 £2F (exp-2r) exp 5 -
Proof : By (1.6) and (1.8) we get
~ n n )
i=1 J=4
J#i
and for 4§ o i
1 n
(2.16) E[(p,=p,:)¥'(p.:)]|X.] == T B{[u(xX,-x,)-
s VL 1l e nk#i n ke
- FeX) 16 ey ) 1%4) = ~E'u(x =X;)=F (X)) 14" (o, )

since the conditional expectations in the sum are zero for

j # k, 1 . Now using the relation

n
- ’ 1 r R - 19488 .3
(pi Dii)W (pii) i n j;i-u(xi xj) Fﬁ(xi"k ((ii,

i




5 3, 1=

and noting that
- Vv' 3 =

we obtain from (2.14)

PN 1 n n
(2.17) B =iP e
n n no. j#i 10
with
= - = Gy <Elr e -
(2.18) v.lj = [u(x.l xj) Fj(xi),w (pii) E'__u(xi xj)
- ’ }
Fj(xi)N (pii)]xj" J
Clearly
2.19 e ] o= e b e .
( ) E[vljlxjj 0, E[vlj|xl‘ 0
By the polynomial theorem we get
~ n n
(2.200 E{(r -7 )%F) = n"2R: : ciijfzr
i=1 34 * ¢
n n
- 2r - (2r) ! Bl 1 1 (e.v..) 13y
- i=1 j# Y
I 0 (s;.1) °
i=1 i *J

where the sum should be taker over terms corresponding to

different vector solutions (s..} , i, j=1l,...n, j#£i

« 0 ke SR RS AN o A 0




;x“f‘ .

Jtv

S

of the equation
n n
(2.21) 5 z o
imi. 4 9
The expectation
n n -

(2.22) o 8%,

i=1 jp1 33 °

is equal to 0 for some vector solutions of (2.21) since
(2.19) holds, and we have only to regard those solutions
for which the expectation (2.22) is not equal to 0O .

We say that sij gives the contribution % Sij to

the sum (2.21) from each of the indices i and j . Hence

according to this notation an index Xk gives the contribution

4

N

1 n n
(2.23) gik) == Y8 . %8
2 gk K3 2 g 3K

to the sum (2.21). By conditioning with respect to all

Xj + J # k we easily find that the expectation (2.22) is equal
to 0 if k gives the contribution % to the sum (2.21).,

i.e. if skj = 1 for exactly one index 3j #¥ k , and

=0 for j #k or if = 1 for exactly one j

sjk sjk
and 84 ™ 0O foxr ¥k .

The sum £ on the right hand side of (2.20) can be
divided into partial sums as follows. Let C be a collection

of different positive integers belonging to the set



Lpsnendl ¢ BBY  C=m AV, 2. ...,8} . Let Za consist of all

terms in (2.20) corresponding to the vector solutions

of (2.21) such that

(a) sij = 0 41if not both i and 4 belong to C ;

(b) for any k €C the contribution to the sum (2.21) is
larger than 1/2 . Note that C can contain at most 2r
different integers since every k€C gives at least the
contribution 1 to the sum (2.21). Clearly partial sums

b and % contain no common terms if Cl * C Con=-

% C,
sider now the expectation

2 .

t t sij
EL 8 B e™. .. ™)
fof 46 *
where the i and Jj belong to the collection C . Note

that sij may be equal to 0 for some pairs (i,j) . By

HBlder's inequality we get, using the fact that

‘Vij' <2{y’]]
Si.
. R G T s, . -
(2.26) 1B 0 (e,vyy) s w1 feg] PEL(v, )N
i=1 j#i J i=1 j#i B
t s
2r 2r i
= 22Ty 2% ||
i=1
where
t t
b e s T R N B,
( ) s; 4 e r




.

The partial sum corresponding to C 1is then estimated by

4 S.
2r) ! 28w, euldl
(2.26) 14 L) (2°F ]y’ | r,ilvciz
n N(s;.)! v
i=1 i#y I
Note that T (?t)! is an integer. Hence
n n (s .1)
i=1 i#j *J
e, (2r)!
we have N(t) = ZC T t
n 0 .(s;.)!
i=1 3¢ *+3

terms in the class C which are estimated by (2.24) . Let

[ be the set of all terms

n n Si.
TED. 1 te,v.5) ™
i=1 j#1 J

in (2.2®) which belong to some class C containing

exactly t indices. Let (81752""'st) 1 (2:26) Dbu
s

¢ & B, =2r , Then according

to the symmetry the set Ce contains a sum of terms, each

given, O‘sl‘sz<...‘s
estimated by

t S.
2r b o
(2.27) 20 g de 1 T
i=1 i
where (kl"'kt) is any combination of numbers 1, 2,...,n
to the tth class and in any order within this class. et

the number of terms in r,_ for a fixed vector

|




=) Be

(sl,sz,.,.,st) as above be n(t) and the sum of terms
(2.27) belonging to (51’52""‘st) be A(sl,sz,...,st) &
(Note that n(t) depends on sl....,st ). Then, since

A(sl,...,st) is a symmetrical function

t S.
n(t 2r 1wl i
(2:28) A(sl'SZ'..”st) =—ré[_l }_'2 E:“V’,\ : !ij
i=1 i
where 7’ is the sum all terms belonging to all permutations
of the numbers 1,2,...n. By HGlder's inequality we get

observing that

8.
1
== t s,
2r.2Y i
lc l 1 = [C J ’ n o= ’
ki ki i=1 2x
S.
t s, t 3 55
(2.29) £’ mle | % = 1 (B 1"
i=1 1 f=1 5
and here
n
i cir = %% 5 2f .
i i=1 %

Hence we obtain by (2.28) and (2.29)

2r
i

2 2r
el

Il M3
0

A(sl'SZ'.."st) €2 cn(t) o—};

i=1

Since ct contains (:)N(t) terms we then find that nt

gives at most the contribution




.

i=1

n
(Dne) 2 5,

2r
i

to the right hand side of (2.20). Putting

2 2r
an = c. T. . =0

1
’ '
n ll nr

™3

i

and regarding the sets Ct for & = 1.2

from (2.20) that

R 2r -2r . 2¢
(2.30) E[(T -T )] =2 n"""[y]] e

=

We estimate N(t) in the following way.

identity

t €

resesll o We obtain

2T

5 (E)N(t) k

1

Consider the

T e

(2,91} L = xix.)zr =3

(2r) !
i=1 j=i 13 =

t

L. 8% 8,.)
i=1 j=1 *J

If an index k gives the contribution

(2.21), L.e. to the sum

t t
3 r8,, = 2¢
i=1 jFi M
then the double product
t t 8,4
no0 (%)
j=1 j#i

8;
R e
yial gy  *

21 to the sum




L .

contains xk

as factor at least in the power 2.

Hence

differentiating the identity twice with respect to each

xk s w1

we get the inequality

and then putting all

X eégual to 1

t 2% %
(2.32) 2%N(t) s {n 39—( N xix.)zr}xk=l. k=1,2,000,t
k=1 %x, i=1 j#i *

The right hand side, however,
(2.33) 10 =& (T x,)

Combining (2.30),

-7 )2r g ?]12Ep2
EL (T ~T )" 1sc(n)|¢']|" 1]

with
2r
c(r) = 22rn-2r T (:)
t=1
n
r2r - 1 £ e, ir E
nr o I i
i=1

We estimate

estimated b(r) in Lemma 2.1 and then obtain for

is at most equal to

Y (4r)! .t :

=l, k=l,...,t~(4r—2t)1

(2.32) and (2.33), we get

b o
: o

g4r2! t4r—2t .z-t

(4r-2t)!

c(r) exactly in the same way as we have

u=2r=-t¢t




B ———

-17a-

r-]
elfe) £ & kia)
u=0
with
I (4r)! 2u u
klu) = n = T (or—ayT (20— .27,
Hence

k(0) =441t k(1) <n” T, (2r)344x) ¢

(2r) ! {2r) 1
and for uz21
%)- < -g—' n"ie? s%— for n~led s-g- "
Hence for n lr3 s%
c(r) siﬁzll-[l-+8n—lr33 i

(2r)!




Thus we have proved (2.13) and (2.14) of the lemma.

It follows by the definition of Tn that

cy [& -E(e;)]

L2}
|
-3
]
el

1

with

)2,‘?“&'”“

1
le; | 85005 =071 .

Hence

2r 2r-1
E[(Sn-Tn) l<n :

RSE:]
)
t

| o
)

i 3 :
and by Lemma 2.1
E[ (8;-E(8,))°"] £ 2°T5[ 82

21' —2 1" ll||2
<01 77EL (o = 0,01 <02 p(2r) 147 12T

Thus we get (2.11)
EL (S T )°T1 ¢b(2r)T
N - ot 1

By Minkovski's inequality we obtain (2.12) from (2.10) and

(2.11)

R T NI [ ¢




1 3 i3
2r, e . GERT 1 L AL et 5 2
E "(sn Tn) ]<E [(s, Tn) T4+E _(Tn Tn) 3 L
~ n ~ .
Lemma 2.3: Tn = ¥ Téj) with independent random variables
j=1
: A(]) I -
T = h - - Bl S 1
(1) - CJ[‘HQJJ) H(ojj)é
) A ’ .
e~ ‘l_ci[E(u(Xi-Xj)-Fj(Xi))W(Dii)lXj; 3
i#j
Further
n o O n
1)z LT3 carzyP e 1Py s 1oy 1?
j=1 §=1

Proof: We get the representation (i) by (2.16). Using

well-known inequalities

n n
l(a+b)>| g4l |a|3+(p]|37 , |( £ a.)31en? ¢
j=1 * i=1 *

we obtain
21T 1%y e aley PELITy (o, )1 - Byt ) 17
" 3 3
¥ Tle 7L .
T i#5 il
Here

3 o 2
E( <) =E s )3T ) g2 lwB(9(p. ) =B ¢ :
L'*(%J ) [W(sj')a ( (gu_ LT

e e i e




=20

Thus we get (ii).

3. Proofs of the theorems.

(a) Proof of Theorem 1.1 :(1.10)follows from Berry-Esséen's

inegquality and Lemma 2.3 and (l.l1ll) from Lemma 2,2 (2,12).

(b) Proof of Theorem 1l.2. For h>0 we get
~ 1 ~ -'\ ~
(3.1) P(S <5 X} $P(S_ $5x, Is, Tn!<h5n)
_A ~ ~ r —A A ~
+ p[ ]sn Tn|zh5n]sP[Tnsén(x+h) J+p[ [sn Tn,"hbnj "
Applying Theorem 1.1 we get

(3.2) Pt'i'ns 8, (x+h) ]<g(x+h) +4c(21¢.1‘;3+[F‘¢v"'3) .

Here

(3.3) 3 (x+h) s&(x) +hlaw] = Fx) +7}2-‘—ﬂ ]

By Chebychev's inequality and the inequality (2.12) of Lemma

2.2 we get

(3.4)  PB{|S_-T_| 2hs_ ) sd(r, o) T2E(he ) 72T |

Now we choose n such that




e — e i g

l 1

2 "—21‘,,2]:'- 2r+1
- 1) W
(3.5) h — E(zl / d(rl ¢);)n “nr'

It follows by Lemma 2.2 (2.12), (2.13) and (2.14) and the re

remark made there in Lemma 2.2 that for n—lr3 < 3/8

1

(a(r, 41 %*

] R A i !
sclr(fle']l+ "

with an absolute constant C’ ., Then it follows by (3.4)

and (3.5) that

h 2= s =2
72—“_ + d(r,\l{)rnr(hén)
2r
"l " 2v+1
< e Bz (g felle er, 37T

By (3.1) - (3.6) we get the inequality (1.12) in one direction.

It follows for the other direction in the same way.
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